
(aka TDD: Brooks' Silver Bullet?)

Jonathan Hartley

http://tartley.com
tartley@tartley.com

PyCon 2008,
Chicago, USA.

Getting Started with Test Driven
Development (TDD) in Python

Aims of this talk

To demystify the process of getting started
with test-driven development (TDD) in Python.

I'll create a small test-driven project from
scratch, using an Extreme Programming
model, and show:

● How to do it
● The benefits it can provide
● Pitfalls to avoid

Example Project: Thumbnailer
To scan a directory of images and use the
Python Image Library (PIL) to generate
thumbnails in a new subdirectory.

I want to develop the project in a test-driven
way.

What do I do?

Step 1: Write an Acceptance Test

Acceptance
test 1

User Story 1

Program
'ThumbNailer'

Implemented
by

Invokes

Executable
test class

Is an executable version of
your human-readable
specification documents.

Unfilled boxes
are my notation

for 'not yet
implemented'

Human-
readable

specification

Also known as a functional, integration,
system-level, scenario or end-to-end test.

See source code s00 to s04

A program which made this
test pass can be considered
to perfectly fulfil the spec.

But we haven't yet written
any such program...

Test­driven means tests first
Write acceptance tests before writing or designing
the program under test.
● Writing tests afterwards leads to poor tests

(miss your own blind spots, and psychological
disincentive to find problems)

● Writing tests first allows you to focus on how
you want the product to behave, thus refining
and clarifying the specification, without being
prematurely influenced by product design
ideas.

Step 2: Start your product design

Plan out just enough functionality to make your
first acceptance test pass.

Class A

+ ?

Class B

Product classes
 and functions

(not yet implemented)

Use your failing acceptance test to drive the area
of the code which you work on.

Step 3: Write one unit test

A unit test is an executable test class, just like
an acceptance test.
But unit tests do not invoke the whole program -
they test individual functions and classes at the
lowest level.

Again, test first is important.

Class A Unit
test A

Class B

Executable
test class

Run your unit test to watch it fail

Product classes
 and functions

(not yet implemented)

See source code s05

Unit
test A

Step 4: Start coding (Finally!)
Class A Unit

test A

Class B

Executable
test classes

Product classes
 and functions Class A

Use your unit test failures to improve your
product classes, until all unit tests pass.

See source code s06 & s07

Note here the most prominent disadvantage of
TDD – we have done a lot of work creating
tests, and only now get to start work on our
product.

Step 5: Add more Unit Tests

Always use the current acceptance test failure to
drive which classes you work on next.

Improve your unit tests, and make new ones, to
cover the classes you are about to implement.

Implement and improve the product code again, to
make the unit tests pass.

Class A Unit
test A

Class B

Executable
test classes

Product classes
 and functions Class A

Unit
test B

Class B

Class B Unit
test CClass C

Step 6: Add More Acceptance Tests

Program 'Thumbnailer'

Class A

Class B

Class C

Acceptance
test 2

Acceptance
test 1

Acceptance
test 3

Unit
test A

Unit
test C

Unit
test B

User Story 2 User Story 3User Story 1

Class A

Class C

Class B

See source code s08

After several unit tests
are passing, eventually
your acceptance test
will also start to pass.

Then you should
add a new
acceptance test,
and iterate the
process.

Step 7: Integrate into build process

Create a script to
run all tests

Add this script to
your build process

Program 'ThumbNailer'

Class A

Class B

Class C

Acceptance
test 1

Acceptance
test 2

Acceptance
test 3

Unit
test A

Unit
test C

Unit
test B

User Story 1 User Story 1User Story 1

Run all
tests script

Build
process

Class A

Class C

Class B

No check-in with
failing tests

More advanced scenarios

● Distributed builds for speed

● Integration builds can verify that changes work
on several platforms.

● Run a continuous build server, to flush out race
conditions or other occasionally failing tests.

● Tests can measure performance, giving instant
feedback if behaviour-preserving changes
introduce unexpected time or memory costs.

Brooks' Silver Bullet?

● Tests allow objective measurement of whether
code changes are an improvement or not.

● Brooks stated there would be 'no silver bullet' to
the problems of complexity inherent to software
and the development process.

● Without such measurement, in a system of
sufficient complexity, we are just guessing that
each change is an overall improvement.

● With objective measurement, we can eliminate
bad changes, creating a ratchet to ensure that
changes always act to improve our product.

Disadvantages and pitfalls
● Writing and maintaining test code takes time.

(eg. 4:1 ratio of test code to product)
● Sporadically failing tests, caused by race

conditions, non-deterministic behaviour or
external influences, can be troublesome. (try
continuous builds)

● Some things are hard to write tests for,
especially acceptance tests of GUI. (use a
framework such as Selenium for web apps)

● Tests for large projects can take a long time
to run, reducing agility. (try distributed builds)

Advantages
● Assurance that new code really works.

● Enables massive, painless refactoring.
● Product code has better external interfaces,

and better internal design.

● Breaks down large, daunting tasks into
controlled, well-understood steps.

● Eliminates the need for project integration test
phases – development is sustainable.

● Instant feedback if changes break old code.

● Tests form up-to-date and unambiguous docs of
product code's abilities and intended usage.

● Passing acceptance tests means provably
conforming to an unambiguous, predefined spec.

●
R

ed
uc

es
 d

ev
el

op
er

 g
ol

d-
pl

at
in

g

Thanks for listening.
EOF

Jonathan Hartley

http://tartley.com
tartley@tartley.com

PyCon 2008,
Chicago, USA.

